I am executing ML-examples ->cmsisnn-cifar10. While converting trained caffe model into cmsis-nn by below command
python nn_quantizer.py --model models/cifar10_m7_train_test.prototxt --weights models/cifar10_m7_iter_300000.caffemodel.h5 --save models/cifar10_m7.pkl
getting error message.
Traceback (most recent call last): File "nn_quantizer.py", line 614, in <module> my_model.get_graph_connectivity() File "nn_quantizer.py", line 231, in get_graph_connectivity num_branch = len(self.bottom_blob[current_layer])KeyError: 'accuracy'
Kindly provide any refernce for solving above error.
Hey rafakath, could you tell me what went wrong in your prototxt? I'm having the same issue but I can't seem to find anything wrong with my prototxt.
name: "VGGNet_xavier" layer { name: "data" type: "Data" include { phase: TRAIN } transform_param { crop_size: 224 mean_value: 104 mean_value: 117 mean_value: 123 mirror: true } data_param { source: "/home/sumant/Project/ML-examples/cmsisnn-cifar10/data_set/train_lmdb" batch_size: 128 backend: LMDB } top: "data" top: "label" } layer { name: "data" type: "Data" include { phase: TEST } transform_param { crop_size: 224 mean_value: 104 mean_value: 117 mean_value: 123 mirror: false } data_param { source: "/home/sumant/Project/ML-examples/cmsisnn-cifar10/data_set/val_lmdb" batch_size: 32 backend: LMDB } top: "data" top: "label" } layer { name: "conv1_1" type: "Convolution" bottom: "data" top: "conv1_1" convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } quantization_param { bw_layer_in: 16 bw_layer_out: 16 bw_params: 8 fl_layer_in: 8 fl_layer_out: 6 fl_params: 7 } } layer { name: "relu1_1" type: "ReLU" bottom: "conv1_1" top: "conv1_1" } layer { name: "conv1_2" type: "Convolution" bottom: "conv1_1" top: "conv1_2" convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } quantization_param { bw_layer_in: 16 bw_layer_out: 16 bw_params: 8 fl_layer_in: 6 fl_layer_out: 3 fl_params: 8 } } layer { name: "relu1_2" type: "ReLU" bottom: "conv1_2" top: "conv1_2" } layer { name: "pool1" type: "Pooling" bottom: "conv1_2" top: "pool1" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv2_1" type: "Convolution" bottom: "pool1" top: "conv2_1" convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } quantization_param { bw_layer_in: 16 bw_layer_out: 16 bw_params: 8 fl_layer_in: 3 fl_layer_out: 2 fl_params: 8 } } layer { name: "relu2_1" type: "ReLU" bottom: "conv2_1" top: "conv2_1" } layer { name: "conv2_2" type: "Convolution" bottom: "conv2_1" top: "conv2_2" convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } quantization_param { bw_layer_in: 16 bw_layer_out: 16 bw_params: 8 fl_layer_in: 2 fl_layer_out: 2 fl_params: 8 } } layer { name: "relu2_2" type: "ReLU" bottom: "conv2_2" top: "conv2_2" } layer { name: "pool2" type: "Pooling" bottom: "conv2_2" top: "pool2" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv3_1" type: "Convolution" bottom: "pool2" top: "conv3_1" convolution_param { num_output: 256 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } quantization_param { bw_layer_in: 16 bw_layer_out: 16 bw_params: 8 fl_layer_in: 2 fl_layer_out: 1 fl_params: 7 } } layer { name: "relu3_1" type: "ReLU" bottom: "conv3_1" top: "conv3_1" } layer { name: "conv3_2" type: "Convolution" bottom: "conv3_1" top: "conv3_2" convolution_param { num_output: 256 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } quantization_param { bw_layer_in: 16 bw_layer_out: 16 bw_params: 8 fl_layer_in: 1 fl_layer_out: 1 fl_params: 8 } } layer { name: "relu3_2" type: "ReLU" bottom: "conv3_2" top: "conv3_2" } layer { name: "conv3_3" type: "Convolution" bottom: "conv3_2" top: "conv3_3" convolution_param { num_output: 256 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } quantization_param { bw_layer_in: 16 bw_layer_out: 16 bw_params: 8 fl_layer_in: 1 fl_layer_out: 1 fl_params: 8 } } layer { name: "relu3_3" type: "ReLU" bottom: "conv3_3" top: "conv3_3" } layer { name: "pool3" type: "Pooling" bottom: "conv3_3" top: "pool3" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv4_1" type: "Convolution" bottom: "pool3" top: "conv4_1" convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } quantization_param { bw_layer_in: 16 bw_layer_out: 16 bw_params: 8 fl_layer_in: 1 fl_layer_out: 1 fl_params: 8 } } layer { name: "relu4_1" type: "ReLU" bottom: "conv4_1" top: "conv4_1" } layer { name: "conv4_2" type: "Convolution" bottom: "conv4_1" top: "conv4_2" convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } quantization_param { bw_layer_in: 16 bw_layer_out: 16 bw_params: 8 fl_layer_in: 1 fl_layer_out: 2 fl_params: 8 } } layer { name: "relu4_2" type: "ReLU" bottom: "conv4_2" top: "conv4_2" } layer { name: "conv4_3" type: "Convolution" bottom: "conv4_2" top: "conv4_3" convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } quantization_param { bw_layer_in: 16 bw_layer_out: 16 bw_params: 8 fl_layer_in: 2 fl_layer_out: 3 fl_params: 8 } } layer { name: "relu4_3" type: "ReLU" bottom: "conv4_3" top: "conv4_3" } layer { name: "pool4" type: "Pooling" bottom: "conv4_3" top: "pool4" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv5_1" type: "Convolution" bottom: "pool4" top: "conv5_1" convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } quantization_param { bw_layer_in: 16 bw_layer_out: 16 bw_params: 8 fl_layer_in: 3 fl_layer_out: 4 fl_params: 9 } } layer { name: "relu5_1" type: "ReLU" bottom: "conv5_1" top: "conv5_1" } layer { name: "conv5_2" type: "Convolution" bottom: "conv5_1" top: "conv5_2" convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } quantization_param { bw_layer_in: 16 bw_layer_out: 16 bw_params: 8 fl_layer_in: 4 fl_layer_out: 5 fl_params: 9 } } layer { name: "relu5_2" type: "ReLU" bottom: "conv5_2" top: "conv5_2" } layer { name: "conv5_3" type: "Convolution" bottom: "conv5_2" top: "conv5_3" convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } quantization_param { bw_layer_in: 16 bw_layer_out: 16 bw_params: 8 fl_layer_in: 5 fl_layer_out: 6 fl_params: 8 } } layer { name: "relu5_3" type: "ReLU" bottom: "conv5_3" top: "conv5_3" } layer { name: "pool5" type: "Pooling" bottom: "conv5_3" top: "pool5" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "fc6" type: "InnerProduct" bottom: "pool5" top: "fc6" inner_product_param { num_output: 4096 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0.1 } } quantization_param { bw_layer_in: 16 bw_layer_out: 16 bw_params: 4 fl_layer_in: 6 fl_layer_out: 8 fl_params: 8 } } layer { name: "relu6" type: "ReLU" bottom: "fc6" top: "fc6" } layer { name: "drop6" type: "Dropout" bottom: "fc6" top: "fc6" dropout_param { dropout_ratio: 0.5 } } layer { name: "fc7" type: "InnerProduct" bottom: "fc6" top: "fc7" inner_product_param { num_output: 4096 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0.1 } } quantization_param { bw_layer_in: 16 bw_layer_out: 16 bw_params: 4 fl_layer_in: 8 fl_layer_out: 10 fl_params: 7 } } layer { name: "relu7" type: "ReLU" bottom: "fc7" top: "fc7" } layer { name: "drop7" type: "Dropout" bottom: "fc7" top: "fc7" dropout_param { dropout_ratio: 0.5 } } layer { name: "fc8" type: "InnerProduct" bottom: "fc7" top: "fc8" inner_product_param { num_output: 1000 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0.1 } } quantization_param { bw_layer_in: 16 bw_layer_out: 16 bw_params: 4 fl_layer_in: 10 fl_layer_out: 10 fl_params: 7 } } layer { bottom: "fc8" top: "prob" name: "prob" type: "Softmax" } layer { name: "accuracy/top1" type: "Accuracy" bottom: "fc8" bottom: "label" top: "accuracy@1" include: { phase: TEST } accuracy_param { top_k: 1 } } layer { name: "accuracy/top5" type: "Accuracy" bottom: "fc8" bottom: "label" top: "accuracy@5" include: { phase: TEST } accuracy_param { top_k: 5 } }